Horizon Run 5

HR5 web page

Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box, we zoom-in on a high-resolution cuboid region with a volume of 1049×114×114 cMpc3. The sub-grid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation, we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. Light cone space data was generated on-the-fly, as well as snapshots. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder PGalF to analyze the large outputs of HR5. The simulation successfully reproduces observations, such as the cosmic star formation history and connectivity of galaxy distribution. HR5 contains cosmological structures in a wide range of scales, from filaments of a few cMpc lengths to voids of ∼100 cMpc radii. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to understand the corresponding biases carefully. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.