Secular relaxation of stellar clusters

Kerwann TEP (IAP) September 18th, 2023 Supervisors: Christophe PICHON Jean-Baptiste FOUVRY

Observations

- GAIA, JWST, Euclid
- Statistical description of stellar clusters
- Secular times: good fraction of the age of the Universe

Observations

- GAIA, JWST, Euclid
- Statistical description of stellar clusters
- Secular times: good fraction of the age of the Universe

GAIA

JWST

Euclid

→ GAIA'S GLOBULAR CLUSTERS AND DWARF GALAXIES

www.esa.int

 \rightarrow 50,000 sources of near-infrared light

JWST

Pandora's Cluster Credits: NÁSA, ESA, CSA

Violent relaxation

Violent relaxation

Violent relaxation

→ Quasi-stationary state (QSS)

Mean-field limit

 $\Phi_{
m d}=\Phi+\delta\Phi$

 \rightarrow Slow evolution of QSS

 $N \simeq 500\ 000$

 $N \simeq 500\ 000$

Plummer cluster (N-body)

Credit: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey.

 $N \simeq 500\ 000$

Plummer cluster (N-body)

 $N \simeq 500\ 000$

2000

Plummer cluster (N-body)

 $N \simeq 500\ 000$

Plummer cluster (N-body)

Core collapse

 $N \simeq 500\ 000$

Plummer cluster (N-body)

Credit: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey.

Core collapse

 $N \simeq 500\ 000$

Plummer cluster (N-body)

Credit: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey.

Core collapse

→ What impacts the rate of core collapse ?

 $N \simeq 500\ 000$

Hot systems

Globular cluster (NGC 1781)

Image credit: ESA/Hubble & NASA HST

Hot systems

Globular cluster (NGC 1781)

Image credit: ESA/Hubble & NASA HST

22

Hot systems

Amplitude

Globular cluster (NGC 1781)

Image credit: ESA/Hubble & NASA HST 2

→ Gravitational wake

Cold systems

→ <u>Self-amplified</u> gravitational wake

Predicting the secular fate of globular clusters

Credit: NASA/ESA

- How to make <u>theoretical predictions</u> ?
- What <u>mechanisms</u> impact secular evolution?
- How does <u>kinematics</u> impact evolution ? (hot or cold)

Messier 15 (HST)

Theoretical prediction

• Goal: evolution of the statistical ensemble of these objects

$$m_i \frac{\mathrm{d} \boldsymbol{v}_i}{\mathrm{d} t} = \sum_{j \neq i} \mathbf{F}_{j \to i}$$

• Costly, non-linear evolution

Theoretical prediction

• Goal: evolution of the statistical ensemble of these objects

$$m_i \frac{\mathrm{d}\boldsymbol{v}_i}{\mathrm{d}t} = \sum_{j \neq i} \mathbf{F}_{j \to i}$$

- Costly, non-linear evolution
- Gravity is long-range

Hamiltonian dynamics

Hamiltonian dynamics

Hamiltonian dynamics

$$\frac{\mathrm{d}\boldsymbol{r}_{i}}{\mathrm{d}t} = \frac{\partial H_{N}}{\partial \boldsymbol{v}_{i}} \quad ; \quad \frac{\mathrm{d}\boldsymbol{v}_{i}}{\mathrm{d}t} = -\frac{\partial H_{N}}{\partial \boldsymbol{r}_{i}}$$
$$H_{N} = \frac{1}{2} \sum_{i=1}^{N} \boldsymbol{v}_{i}^{2} - \sum_{i < j} \frac{Gm}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|}$$

 \rightarrow 6N equations times number of realisations

ightarrow 6N equations times number of realisations

 \rightarrow 6N equations times number of realisations

43

 \rightarrow 6N equations times number of realisations

 \rightarrow 6N equations times number of realisations

 \rightarrow 6N equations times number of realisations

 \rightarrow 1 equation on the field

Mean field limit

 \rightarrow 6N equations times number of realisations

 \rightarrow 1 equation on the field

Angle action coordinates

Angle action coordinates

• Action : motion integrals

Angle action coordinates

• Action : motion integrals

Actions in a globular cluster

Actions in a globular cluster

- Shearing
- Phase-averaged state

- Shearing
- Phase-averaged state

• Shearing

10

8

2

0 L

Actions

• Phase-averaged state

Driving secular relaxation: finite-N effects

Mean-field potential

Collisionless dynamics: C[F] = 0

$$\frac{\partial F}{\partial t} + \mathbf{\Omega} \cdot \frac{\partial F}{\partial \mathbf{Q}} = 0$$
QSS 0

Mean field potential + finite-N noise Collisional dynamics: $C[F] = \frac{1}{N} [...]$ $\frac{\partial F}{\partial t} + \Omega \cdot \frac{\partial F}{\partial \theta} = C[F]$ QSS

Computing the collision integral C[F]

How to make theoretical predictions ?

- What mechanisms impact secular evolution?
- How does kinematics impact evolution ?

Orbital diffusion

$$\frac{\partial F}{\partial t}(\boldsymbol{J},t) = \mathcal{C}[F]$$

$$\frac{\partial F}{\partial t}(\boldsymbol{J},t) = \mathcal{C}[F]$$

$$\begin{aligned} \frac{\partial F}{\partial t}(\boldsymbol{J},t) &= \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int \mathrm{d} \boldsymbol{J}' |\psi_{\boldsymbol{k}\boldsymbol{k}'}^{\mathrm{d}}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \,\delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ &\times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t) F(\boldsymbol{J}',t), \end{aligned}$$

$$\begin{aligned} \frac{\partial F}{\partial t}(\boldsymbol{J},t) &= \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int \mathrm{d} \boldsymbol{J}' |\psi^{\mathrm{d}}_{\boldsymbol{k}\boldsymbol{k}'}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \,\delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ &\times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t)F(\boldsymbol{J}',t), \end{aligned}$$

Balescu-Lenard equation

$$\begin{split} \frac{\partial F}{\partial t}(\boldsymbol{J},t) &= \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int \mathrm{d} \boldsymbol{J}' |\psi_{\boldsymbol{k}\boldsymbol{k}'}^{\mathrm{d}}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \,\delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ & \times \bigg(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\bigg) F(\boldsymbol{J},t)F(\boldsymbol{J}',t), \end{split}$$

Shot noise fluctuations

M

N

 $F(\boldsymbol{J},t)$ Slow evolution of QSS

Balescu-Lenard equation

$$\begin{split} \frac{\partial F}{\partial t}(\boldsymbol{J},t) &= \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int \mathrm{d} \boldsymbol{J}' |\psi_{\boldsymbol{k}\boldsymbol{k}'}^{\mathrm{d}}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \,\delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ & \times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t) F(\boldsymbol{J}',t), \end{split}$$

Shot noise fluctuations

 $F(oldsymbol{J},t)$ Slow evolution of QSS

M

N

Sum over resonances
Heyvaerts (2010) Chavanis (2012)

Balescu-Lenard equation

$$\begin{split} \frac{\partial F}{\partial t}(\boldsymbol{J},t) &= \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int \mathrm{d} \boldsymbol{J}' |\psi^{\mathrm{d}}_{\boldsymbol{k}\boldsymbol{k}'}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ & \times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t) F(\boldsymbol{J}',t), \end{split}$$

Shot noise fluctuations

$$\delta_{
m D}(oldsymbol{k}\cdotoldsymbol{\Omega}-oldsymbol{k}'\cdotoldsymbol{\Omega}')$$

Non-local resonant coupling

 $F(\boldsymbol{J},t)$ Slow evolution of QSS

M

N

Sum over resonances

Heyvaerts (2010) Chavanis (2012)

Balescu-Lenard equation

$$\begin{split} \frac{\partial F}{\partial t}(\boldsymbol{J},t) &= \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int \mathrm{d} \boldsymbol{J}' |\psi^{\mathrm{d}}_{\boldsymbol{k}\boldsymbol{k}'}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ & \times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t) F(\boldsymbol{J}',t), \end{split}$$

Shot noise fluctuations

 $F(\boldsymbol{J},t)$ Slow evolution of QSS

$$\sum_{m{k},m{k}'}$$

M

N

Sum over resonances

$$egin{aligned} &\delta_{\mathrm{D}}(oldsymbol{k}\cdotoldsymbol{\Omega}-oldsymbol{k}'\cdotoldsymbol{\Omega}') \ &|\psi^{\mathrm{d}}_{oldsymbol{k}oldsymbol{k}'}(oldsymbol{J},oldsymbol{J}',oldsymbol{k}\cdotoldsymbol{\Omega})|^2 \end{aligned}$$

Non-local resonant coupling

Dressed orbital coupling

Heyvaerts (2010) Chavanis (2012)

Balescu-Lenard equation

$$\frac{\partial F}{\partial t}(\boldsymbol{J},t) = \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int d\boldsymbol{J}' |\psi_{\boldsymbol{k}\boldsymbol{k}'}^{d}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ \times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t)F(\boldsymbol{J}',t),$$

 $\mathrm{d} m{J}'$

Shot noise fluctuations

 $F(oldsymbol{J},t)$ Slow evolution of QSS

M

N

Sum over resonances

$$egin{aligned} &\delta_{\mathrm{D}}(oldsymbol{k}\cdotoldsymbol{\Omega}-oldsymbol{k}'\cdotoldsymbol{\Omega}')\ &|\psi^{\mathrm{d}}_{oldsymbol{k}oldsymbol{k}'}(oldsymbol{J},oldsymbol{J}',oldsymbol{k}\cdotoldsymbol{\Omega})|^2 \end{aligned}$$

Non-local resonant coupling

Dressed orbital coupling

Scan over action space

Limit cases of the BL equation

Heyvaerts (2010)

Balescu-Lenard (BL)

 $\sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \cdot \boldsymbol{\Omega}(\boldsymbol{J}) = \boldsymbol{k}' \cdot \boldsymbol{\Omega}(\boldsymbol{J}')$ $\psi^{\mathrm{d}}_{\boldsymbol{k}\boldsymbol{k}'}$ $\int \mathrm{d}\boldsymbol{J}'$

Limit cases of the BL equation

Limit cases of the BL equation

Stellar system

Stellar system

Secular predictions

- How to make theoretical predictions ?
- What mechanisms impact secular evolution?
- How does kinematics impact evolution ?

Credit: ESA/Hubble & NASA,R.Cohen

NGC 6638 (HST)

The Plummer cluster (N-body simulations)

Radial anisotropy

Isotropy

0.0

Tangential anisotropy

0.0

0.0

98

- Choice of mean field: Plummer potential
- Choice of velocity dispersion: anisotropy

- Choice of mean field: Plummer potential
- Choice of velocity dispersion: anisotropy

- Choice of mean field: Plummer potential
- Choice of velocity dispersion: anisotropy

 $F(J) [\times 10^3]$

60

-10

- Choice of mean field: Plummer potential
- Choice of velocity dispersion: anisotropy

- Choice of mean field: Plummer potential
- Choice of velocity dispersion: anisotropy

- Choice of mean field: Plummer potential
- Choice of velocity dispersion: anisotropy

Core collapse vs anisotropy

• Numerical simulation: average over 100 realisations

Core collapse vs anisotropy

• Numerical simulation: average over 100 realisations

Configuration space vs orbital space

N-body prediction

N-body prediction

Theory for globular clusters

 $\langle \Delta oldsymbol{v}
angle \propto m \ln \Lambda \int \mathrm{d} oldsymbol{v}' \left[...
ight] F(oldsymbol{v}')$

Velocity deflections

3 integrations

Secular response prediction

Secular response prediction

Secular response prediction

- Theoretical prediction
- N-body measurement

Qualitative agreement between Theory and NBODY simulations

Up to overall prefactor (Darker colors for theory)

- Isotropisation vs anisotropy
- Orbital reshuffling

Impact of anisotropy on the rate of orbital change

- Core collapse acceleration
- Orbital reshuffling

Impact of anisotropy on the rate of orbital change

- Isotropisation
- Core collapse acceleration

Satisfying

prediction

Limits of the Chandrasekhar approach

Limits of the Chandrasekhar approach

What about global resonances?

Landau equation

$$\frac{\partial F}{\partial t}(\boldsymbol{J},t) = \pi (2\pi)^3 \frac{M}{N} \frac{\partial}{\partial \boldsymbol{J}} \cdot \sum_{\boldsymbol{k},\boldsymbol{k}'} \boldsymbol{k} \int d\boldsymbol{J}' |\psi_{\boldsymbol{k}\boldsymbol{k}'}(\boldsymbol{J},\boldsymbol{J}',\boldsymbol{k}\cdot\boldsymbol{\Omega})|^2 \delta_{\mathrm{D}}(\boldsymbol{k}\cdot\boldsymbol{\Omega}-\boldsymbol{k}'\cdot\boldsymbol{\Omega}') \\ \times \left(\boldsymbol{k}\cdot\frac{\partial}{\partial \boldsymbol{J}}-\boldsymbol{k}'\cdot\frac{\partial}{\partial \boldsymbol{J}'}\right) F(\boldsymbol{J},t)F(\boldsymbol{J}',t),$$

$$|\psi_{m km k'}^{m \prime}(m J,m J',m k\cdotm \Omega)|^2$$
 $extsf{Bare}$ orbital coupling

Landau equation

Landau prediction

$$\frac{\partial F}{\partial t} = -\frac{\partial}{\partial J} \cdot \boldsymbol{\mathcal{F}}(J) = -\sum_{\ell=0}^{\infty} \frac{\partial}{\partial J} \cdot \boldsymbol{\mathcal{F}}_{\ell}(J)$$

Landau prediction

Harmonic decomposition • of the spherical potential

$$\frac{\partial F}{\partial t} = -\frac{\partial}{\partial J} \cdot \mathcal{F}(J) = -\sum_{\ell=0}^{\infty} \frac{\partial}{\partial J} \cdot \mathcal{F}_{\ell}(J)$$

→ Decompose interactions w.r.t. relative orbital planes

Impact of resonances

Impact of resonances

0.5

Landau

• Scale separation

Landau

Landau

€ l=1

ℓ=0

Impact of resonances $\ell \times \frac{\partial F(\mathbf{J})}{\partial t} [\times 10^8]$ -12 22 -8 -4 11 33 0 0.5 Landau Landau Landau **ℓ**=7 **ℓ**=8 **ℓ**=6 |Flux| 0.4 0.3 J_r 0.2 Collective effects 0.1 0.6 0.2 0.4 0.6 0.8 1.0 0.2 0.8 1.0 0.2 0.4 0.6 0.4 0.8 1.0 1/1 Small scales l ΒL Landau Chandrasekhar

Impact of resonances

High harmonics : Chandrasekhar theory What about small harmonics ?

What about rotation?

- How to make theoretical predictions ?
- What mechanisms impact secular evolution?
- How does kinematics impact evolution ?

142

Impact of rotation

• Rotation curve

ω Cen

Credits: WFI camera, ESO's La Silla Observatory

The rotating Plummer cluster

No rotation α =0

Rotation α =0.25

ACCESSION AND A REPORT OF A

Rotation α =0.5

0.0

Z-axis towards us
The rotating Plummer cluster

- Preferential axis: rotation around (Oz)
- Orbital inclination I: $\cos I = L_z / L$
- 3D action space

The rotating Plummer cluster

- Anisotropic Plummer cluster
- Lynden-Bell demon: preserves spherical symmetry and mean field

Gravo gyro catastrophe?

• Numerical simulation: average over 50 realisations

Gravo gyro catastrophe?

• Numerical simulation: average over 50 realisations

Gravo gyro catastrophe?

• Numerical simulation: average over 50 realisations

Theoretical prediction: Chandrasekhar theory

(L, J_r)-space

- N-body measurement
- Relaxation rate: $dF/dt_{|t=0^+}$

Small impact of rotation on relaxation rate

(L, J_r)-space

- N-body measurement
- Relaxation rate: dF/dt_{|t=0}+

(L, J_r)-space

- Theoretical prediction
- Relaxation rate: dF/dt_{|t=0}+

(L, J_r)-space

- Theoretical prediction
- Relaxation rate: dF/dt_{|t=0}+

 $(\cos I, J_r)$ -space

- N-body measurement
- Relaxation rate: dF/dt_{|t=0}+

Reduction of discontinuities

• Relaxation rate: dF/dt_{|t=0}

How can I make theoretical predictions ?

Balescu-Lenard, Landau, Chandrasekhar

How can I make theoretical predictions ?

Balescu-Lenard, Landau, Chandrasekhar

What mechanisms impact secular evolution?

Pairwise deflections, coherent interactions

2-body deflections

Coherent interactions

How can I make theoretical predictions ?

Balescu-Lenard, Landau, Chandrasekhar

What mechanisms impact secular evolution?

Pairwise deflections, coherent interactions

2-body deflections

What are the origins of the differences in secular evolution?

Kinematic diversity

Coherent interactions

How can I make theoretical predictions ?

Balescu-Lenard, Landau, Chandrasekhar

What mechanisms impact secular evolution?

Pairwise deflections, coherent interactions

2-body deflections

Coherent interactions

What are the origins of the differences in secular evolution?

Kinematic diversity

Upcoming works

Coulomb logarithm

Heggie & Retterer

Upcoming works

Coulomb logarithm

Kocsis & Tremaine (2011) Szolgyen & Kocsis (2018) Meiron & Kocsis (2019)

Vector resonant relaxation

Kocsis & Tremaine (2011) Szolgyen & Kocsis (2018) Meiron & Kocsis (2019)

Sanders & Binney (2016) Vasiliev (2019)

Heggie & Retterer

Galactic nucleus: precession frequency

Galactic nucleus: diffusion coefficient

Galactic nucleus: diffusion coefficient

Galactic nucleus: diffusion coefficient

Galactic nucleus: diffusion time

$$T_{jj}(a) = rac{1}{D_{jj}^{
m iso}(a)} \quad ; \quad D_{jj}^{
m iso}(a) = \int_0^1 {
m d}j \, f(j;a) D_{jj}(a,j),$$

Galactic nucleus: DF

$$\frac{\partial P(j,t \mid a)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial j} \left[j D_{jj}(a,j) \frac{\partial}{\partial j} \left(\frac{P(j,t \mid a)}{j} \right) \right]$$
$$D_{jj}(a,j) = D_{jj}^{\text{RR}}(a,j) + D_{jj}^{\text{NR}}(a,j)$$

Galactic nucleus: LR

$$M_i(< a) = M_i(< a_0)(a/a_0)^{3-\gamma_i}$$
 $L(oldsymbol{lpha}) = \prod_k P(j_k, T_k \mid a_k)$ $\lambda_{
m R}(oldsymbol{lpha}) = 2 \ln \left(L_{
m max} / L[oldsymbol{lpha}]
ight)$

Galactic nucleus: data convergence

GC: local velocity deflection

$$\begin{split} \langle \Delta v_{\parallel} \rangle &= -8\pi m G^2 \ln \Lambda \int_0^{\pi} \! \mathrm{d}\varphi \int_0^{2\pi} \! \mathrm{d}\phi \int_0^{w_{\max}} \! \mathrm{d}w \sin \varphi \cos \varphi \, F_{\mathrm{tot}}(r, E', L'), \\ \langle (\Delta v_{\parallel})^2 \rangle &= 4\pi m G^2 \ln \Lambda \int_0^{\pi} \! \mathrm{d}\varphi \int_0^{2\pi} \! \mathrm{d}\phi \int_0^{w_{\max}} \! \mathrm{d}w \, w \sin^3 \varphi F_{\mathrm{tot}}(r, E', L'), \\ \langle (\Delta v_{\perp})^2 \rangle &= 4\pi m G^2 \ln \Lambda \int_0^{\pi} \! \mathrm{d}\varphi \int_0^{2\pi} \! \mathrm{d}\phi \int_0^{w_{\max}} \! \mathrm{d}w \, w \sin \varphi (1 + \cos^2 \varphi) F_{\mathrm{tot}}(r, E', L'), \end{split}$$

$$\begin{split} w_{\max} &= v \cos \varphi + \sqrt{v^2 \cos^2 \varphi - 2E} \\ E'(r, \boldsymbol{v}, \boldsymbol{v}') &= \psi(r) + \frac{v^2}{2} + \frac{w^2}{2} - vw \cos \varphi, \\ L'(r, \boldsymbol{v}, \boldsymbol{v}') &= r \sqrt{(w \sin \varphi \cos \phi)^2 + \left(v_{\mathrm{t}} + \frac{v_r}{v} w \sin \varphi \sin \phi - \frac{v_{\mathrm{t}}}{v} w \cos \varphi\right)^2}. \end{split}$$

GC: local invariant diffusion

$$\begin{split} \langle \Delta E \rangle &= \frac{1}{2} \langle (\Delta v_{\parallel})^{2} \rangle + \frac{1}{2} \langle (\Delta v_{\perp})^{2} \rangle + v \langle \Delta v_{\parallel} \rangle, \\ \langle (\Delta E)^{2} \rangle &= v^{2} \langle (\Delta v_{\parallel})^{2} \rangle, \\ \langle \Delta L \rangle &= \frac{L}{v} \langle \Delta v_{\parallel} \rangle + \frac{r^{2}}{4L} \langle (\Delta v_{\perp})^{2} \rangle, \\ \langle (\Delta L^{2} \rangle &= \frac{L^{2}}{v^{2}} \langle (\Delta v_{\parallel})^{2} \rangle + \frac{1}{2} \frac{r^{2} v_{r}^{2}}{v^{2}} \langle (\Delta v_{\perp})^{2} \rangle, \\ \langle \Delta E \Delta L \rangle &= L \langle (\Delta v_{\parallel})^{2} \rangle. \end{split}$$

GC: local invariant diffusion (rotation)

$$\begin{split} \langle \Delta E \rangle &= \frac{1}{2} \langle (\Delta v_{\parallel})^{2} \rangle + \frac{1}{2} \langle (\Delta v_{\perp})^{2} \rangle + v \langle \Delta v_{\parallel} \rangle, \\ \langle (\Delta E)^{2} \rangle &= v^{2} \langle (\Delta v_{\parallel})^{2} \rangle, \\ \langle \Delta L \rangle &= \frac{L}{v} \langle \Delta v_{\parallel} \rangle + \frac{r^{2}}{4L} \langle (\Delta v_{\perp})^{2} \rangle, \\ \langle (\Delta L^{2}) &= \frac{L^{2}}{v^{2}} \langle (\Delta v_{\parallel})^{2} \rangle + \frac{1}{2} \frac{r^{2} v_{r}^{2}}{v^{2}} \langle (\Delta v_{\perp})^{2} \rangle, \\ \langle \Delta E \Delta L \rangle &= L \langle (\Delta v_{\parallel})^{2} \rangle. \\ \langle \Delta L_{z} \rangle &= \frac{L_{z}}{v} \langle \Delta v_{\parallel} \rangle, \\ \langle (\Delta L_{z}^{2}) &= \left(\frac{L_{z}}{L}\right)^{2} \left[\frac{L^{2}}{v^{2}} \langle (\Delta v_{\parallel})^{2} \rangle + \frac{1}{2} \frac{r^{2} v_{r}^{2}}{v^{2}} \langle (\Delta v_{\perp})^{2} \rangle \right] + \frac{r^{2} \sin^{2} \theta}{2} \left(1 - \frac{L_{z}^{2}}{L^{2}} \right) \langle (\Delta v_{\perp})^{2} \rangle \\ \langle \Delta E \Delta L_{z} \rangle &= L_{z} \langle (\Delta v_{\parallel})^{2} \rangle, \\ \langle \Delta L \Delta L_{z} \rangle &= L_{z} \left(\frac{L^{2}}{v^{2}} \langle (\Delta v_{\parallel})^{2} \rangle + \frac{1}{2} \frac{r^{2} v_{r}^{2}}{v^{2}} \langle (\Delta v_{\perp})^{2} \rangle \right). \end{split}$$

GC: orbit-average

$$D_X(\boldsymbol{J}) = \frac{\Omega_r}{\pi} \int_{r_{\rm p}}^{r_{\rm a}} \frac{\mathrm{d}r}{|v_r|} \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} \langle \Delta X \rangle(r,\theta,\boldsymbol{J})$$

$$D_{J_{r}} = \frac{\partial J_{r}}{\partial E} D_{E} + \frac{\partial J_{r}}{\partial L} D_{L} + \frac{1}{2} \frac{\partial^{2} J_{r}}{\partial E^{2}} D_{EE} + \frac{1}{2} \frac{\partial^{2} J_{r}}{\partial L^{2}} D_{LL} + \frac{\partial^{2} J_{r}}{\partial E \partial L} D_{EL},$$

$$D_{J_{r}L} = \frac{\partial J_{r}}{\partial E} D_{EL} + \frac{\partial J_{r}}{\partial L} D_{LL},$$

$$D_{J_{r}J_{r}} = \left(\frac{\partial J_{r}}{\partial E}\right)^{2} D_{EE} + 2 \frac{\partial J_{r}}{\partial E} \frac{\partial J_{r}}{\partial L} D_{EL} + \left(\frac{\partial J_{r}}{\partial L}\right)^{2} D_{LL}.$$

GC: Chandrasekhar theory

$$\frac{\partial F(\boldsymbol{J})}{\partial t} = -\frac{\partial}{\partial \boldsymbol{J}} \cdot \boldsymbol{\mathcal{F}}(\boldsymbol{J}) = -\frac{\partial}{\partial \boldsymbol{J}} \cdot \left[\boldsymbol{D}_{1}(\boldsymbol{J}) F(\boldsymbol{J}) - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{J}} \cdot \left(\boldsymbol{D}_{2}(\boldsymbol{J}) F(\boldsymbol{J}) \right) \right],$$
$$\boldsymbol{D}_{1}(\boldsymbol{J}) = \begin{pmatrix} D_{J_{r}} \\ D_{L} \end{pmatrix}, \quad \boldsymbol{D}_{2}(\boldsymbol{J}) = \begin{pmatrix} D_{J_{r}J_{r}} & D_{J_{r}L} \\ D_{J_{r}L} & D_{LL} \end{pmatrix}$$
GC: Chandrasekhar theory (rotation)

$$\begin{bmatrix} \frac{\partial F(J)}{\partial t} = -\frac{\partial}{\partial J} \cdot \mathcal{F}(J) = -\frac{\partial}{\partial J} \cdot \left[D_1(J) F(J) - \frac{1}{2} \frac{\partial}{\partial J} \cdot \left(D_2(J) F(J) \right) \right], \\ D_1(J) = \begin{pmatrix} D_{J_r} \\ D_L \end{pmatrix}, \quad D_2(J) = \begin{pmatrix} D_{J_r,J_r} & D_{J_rL} \\ D_{J_rL} & D_{LL} \end{pmatrix} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial F}{\partial t} = -\frac{\partial}{\partial J} \cdot \mathcal{F}(J) = -\frac{\partial}{\partial J} \cdot \left[D_1(J) F - \frac{1}{2} \frac{\partial}{\partial J} \cdot \left(D_2(J) F \right) \right] \\ D_1(J) = \begin{pmatrix} D_{J_r} \\ D_L \\ D_{COSI} \end{pmatrix}, \quad D_2(J) = \begin{pmatrix} D_{J_r,J_r} & D_{J_rL} & 0 \\ D_{J_rL} & D_{LL} & 0 \\ 0 & 0 & D_{COSICOSI} \end{pmatrix}, \end{bmatrix}$$

GC: flux

GC: cluster regions

GC: isotropisation

GC: pseudo-isotropic method

GC: P-ISO DF

GC: P-Iso local deflections

Bars: Euler-Poisson equations

$$egin{aligned} &rac{\partial\Sigma}{\partial t}+oldsymbol{
abla}\cdot(\Sigmaoldsymbol{v})&=0\,,\ &rac{\partialoldsymbol{v}}{\partial t}+(oldsymbol{v}\cdotoldsymbol{
abla})oldsymbol{v}&=-rac{1}{\Sigma}oldsymbol{
abla}P-oldsymbol{
abla}\Phi\ &\Delta\Phi_{
m disc}&=4\pi G\Sigma\delta_{
m D}(z), \end{aligned}$$

Bars: Linear theory

$$\begin{split} X(r,\theta,t) &= X_0(r) + \delta X(r,\theta,t) \quad ; \quad \delta X(r,\theta,t) = \sum_{m \in \mathbb{Z}} X_m(r) e^{i(m\theta - \omega_m t)} \\ \delta \Sigma_m^{\text{disc}}(r) &= \frac{M(1-p)}{2\pi a_d^2} \left(\frac{1-\xi}{2}\right)^{3/2} \sum_{n=|m|}^{\infty} a_n^m P_n^{|m|}(\xi), \qquad \qquad \int_{-1}^1 \mathrm{d}\xi \; P_n^{|m|}(\xi) P_l^{|m|}(\xi) = \delta_{nl} \\ \delta \Phi_m^{\text{disc}}(r) &= -\frac{GM(1-p)}{a_d} \left(\frac{1-\xi}{2}\right)^{1/2} \sum_{n=|m|}^{\infty} \frac{a_n^m}{2n+1} P_n^{|m|}(\xi), \\ \delta \psi_m(r) &= \frac{4\alpha}{3} \left(\frac{M}{2\pi a_d^2}\right)^{1/3} (1-p)^{1/3} \left(\frac{1-\xi}{2}\right)^{1/2} \sum_{n=|m|}^{\infty} a_n^m P_n^{|m|}(\xi), \\ \delta \Psi_m(r) &= \frac{GM(1-p)}{a_d} \left(\frac{1-\xi}{2}\right)^{1/2} \sum_{n=|m|}^{\infty} \left[\frac{\varepsilon_0}{3(1-p)^{2/3}} - \frac{1}{2n+1}\right] a_n^m P_n^{|m|}(\xi). \\ \delta v_{r,m}(r) &= i \frac{m}{|m|} \left(\frac{GM(1-p)}{a_d}\right)^{1/2} \left(\frac{1+\xi}{2}\right)^{-1/2} \left(\frac{1-\xi}{2}\right)^{1/4} \sum_{n=|m|}^{\infty} b_n^m P_n^{|m|}(\xi). \\ \delta v_{t,m}(r) &= \left(\frac{GM(1-p)}{a_d}\right)^{1/2} \left(\frac{1+\xi}{2}\right)^{-1/2} \left(\frac{1-\xi}{2}\right)^{1/4} \sum_{n=|m|}^{\infty} c_n^m P_n^{|m|}(\xi). \end{split}$$

 $i(-\omega_m + m\Omega)\delta\Sigma_m^{\text{disc}} + \frac{1}{\pi}\frac{d(r\Sigma^0\delta v_{r,m})}{d\pi} + \frac{im\Sigma^0\delta v_{t,m}}{\pi} = 0,$ Bars: Linear theory $\frac{\mathrm{d}\delta\Psi_m}{\mathrm{d}r} + \mathrm{i}(-\omega_m + m\Omega)\delta v_{r,m} - 2\Omega\delta v_{\mathrm{t},m} = 0,$ $\mathrm{i}m\frac{\delta\Psi_m}{r} + \frac{\kappa^2}{2\Omega}\delta v_{r,m} + \mathrm{i}(-\omega_m + m\Omega)\delta v_{\mathrm{t},m} = 0,$ $\sum_{l=1}^{\infty} A_{ln} a_n^m + \sum_{l=1}^{\infty} B_{ln} b_n^m + \sum_{l=1}^{\infty} C_{ln} c_n^m = \widehat{\omega} a_l^m,$ n=|m| n=|m|n = |m| $\sum_{l=1}^{\infty} D_{ln} a_n^m + \sum_{l=1}^{\infty} A_{ln} b_n^m + \sum_{l=1}^{\infty} F_{ln} c_n^m = \widehat{\omega} b_l^m,$ $\mathbf{M}\mathbf{a} = \widehat{\omega}\mathbf{a}$ n=|m|n = |m|n = |m| $\sum_{n=1}^{\infty} G_{ln}a_n^m + \sum_{n=1}^{\infty} H_{ln}b_n^m + \sum_{n=1}^{\infty} A_{ln}c_n^m = \widehat{\omega}c_l^m.$ n=|m| n=|m| n=|m|

Bars: matrix coefficients

$$\begin{split} A_{ln} &= |m| \int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \widehat{\Omega}(\xi) P_{n}^{|m|}(\xi), \\ B_{ln} &= 4\sqrt{1-p} \int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \left(\frac{1-\xi}{2}\right)^{1/2} \frac{\mathrm{d}}{\mathrm{d}\xi} \Big[\left(\frac{1-\xi}{2}\right)^{5/4} P_{n}^{|m|}(\xi) \Big], \\ C_{ln} &= |m| \sqrt{1-p} \int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \left(\frac{1-\xi}{2}\right)^{3/4} \left(\frac{1+\xi}{2}\right)^{-1} P_{n}^{|m|}(\xi), \\ D_{ln} &= 4\sqrt{1-p} \left(\frac{1}{2n+1} - \frac{\varepsilon_{0}}{3} \frac{1}{(1-p)^{2/3}}\right) \\ &\times \int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \left(\frac{1-\xi}{2}\right)^{5/4} \left(\frac{1+\xi}{2}\right) \frac{\mathrm{d}}{\mathrm{d}\xi} \Big[\left(\frac{1-\xi}{2}\right)^{1/2} P_{n}^{|m|}(\xi) \Big], \\ F_{ln} &= 2\int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \widehat{\Omega}(\xi) P_{n}^{|m|}(\xi), \\ G_{ln} &= -|m| \sqrt{1-p} \left(\frac{1}{2n+1} - \frac{\varepsilon_{0}}{3} \frac{1}{(1-p)^{2/3}}\right) \int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \left(\frac{1-\xi}{2}\right)^{3/4} P_{n}^{|m|}(\xi), \\ H_{ln} &= \int_{-1}^{1} \mathrm{d}\xi P_{l}^{|m|}(\xi) \frac{\hat{\kappa}^{2}(\xi)}{2\widehat{\Omega}(\xi)} P_{n}^{|m|}(\xi). \end{split}$$

Bars: eigenvalue convergence study

Bars: eigenvalue temperature dependency

Bars: bulge/DH

Secular relaxation

