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Some Gaia-era questions

m Decipher the structure of the Galaxy, and of each of its components
(stellar pops, satellite population), including its dark matter
distribution, e.g.:

total mass,
core vs. cusp,
phase-space distribution important for direct searches...

m How many dissolved galaxies formed the stellar halo?

m How many stellar streams (from GCs and dwarfs)? Use these in turn
to measure the acceleration field and constrain the DM distribution
& clumping ( + effects on secular evolution of the disk?)

m [s it consistent with ACDM, with specific DM alternatives (warm
DM, self-interacting DM...), with modified gravity?



MW dynamical models

Collisionless Boltzmann
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Jeans theorem

m [f integrable system: df, /dt =0 < f, (1,,1,,15)

m Natural phase-space coordinates for regular orbits in
(quasi)-integrable systems: actions J and angles 0
= phase-space canonical coordinates such that H=H(J)

=> f, (J) with J adiabatic invariants

m A triplet of actions defines a regular orbit, angles
tell us where the star is along that orbit
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ACTIONFINDER

m Deep learning algorithm (Ibata et al. 2021)
designed to:

- transform a sample of phase-space measurements
along orbits in an (unknown) static potential into
action and angle coordinates, using the fact that
stars along a same orbit have the same actions

- Find the actual potential !



ACTIONFINDER

observations: analytic approximation:
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ACTIONFINDER

analytic approximation:
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m  With 8 points per orbit and 128 orbits (hence 1024 phase-space points), recovers the
actions and angles from the Torus machinery of Binney & McMillan with 0.6%

precision
m  But most importantly: recovers the (unknown) Hamiltonian and therefore

Galactic potential !
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Stellar streams nearly trace orbits

. Find single stellar pops. and
Streams (Ibata et al., Gaia EDR3):  jptegrate streams orbits in a tube

32 stregms n Gaia. DR?, 7 new ones without by expl orin g all distances and

an obvious progenitor in EDR3 . . :
radial vel. until stream candidate
found (STREAMFINDER)
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15 with a globular cluster progenitor
(good distance, SSP template, and GC on the actual orbit)
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Modelling the MW disc

Adjust comination of parametric DFs:

~
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together with the

velocity

disp.dependence

in previous factor

Even better: non-parametric DF: adjust with neural nets

But not so « simple »: the disc 1s perturbed by both
internal non-axisymmetries and external perturbations!



Modelling the MW disc: it’s a mess
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Modelling the MW disc: it’s a mess
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=> Can traditional Jeans modelling be applied? NO (Haines et al. 2019)
=> Can we neglect self-gravity of the disc? NO (Khoperskov et al. 2019)

Relevant to testing gravity too!!
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Perturbation theory
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Treating resonances

Data R=8.2kpc (R/Rcr=1.381, R/IRo z=0.7838)
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Monari et al. (2017; 2019) with bar model of Portail et al. (2017)
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Vertical perturbations

Taking self-gravity into account needs simultaneously solving
CBE and Poisson

=> Use bi-orthogonal basis functions that solve Poisson
(basis functions appropriate for thickened disks)

¢S (X, t) — Z ( )w(p)( Z b w(p) The Sgr dwarf potential
p
g, (1) = / dx /dv flt x, v, )P (x) [equivalent to integrating over J and 0]

insert solution of linearized CBE and develop
the perturbing potential (Ws+¥e) on the basis
functions (as a sum over q)
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Response of the DM halo?

m LMC (could have 10%-15% of MW mass!),

Sagittarius dwart and their own DM halo can
perturb the DM and stellar halos

=> Analytical perturbation theory relevant too!
= Use the Matrix method to compute the
response of the dark and stellar halos to the

LMC 1nfall (Rozier et al. in prep.)

= Allows to 1solate the relevant resonances



Response of the DM halo ?

m We found that self-gravity is unimportant => the response of the DM
halo does not affect the response of the stellar halo (tentatively
detected by Petersen & Penarrubia 2020; Erkal et al. 2020; Conroy et al. 2021)

The strength of the response
can teach us about the

dynamical state of the stellar
halo (but not of the DM halo)

m The situation regarding self-gravity 1s probably different regarding the
feedback on the halo response on the disk concerning the Sgr dwarf
perturbation (Laporte et al. 2018)
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Some Gaia-era answers...

m [t’s complicated... but here are some (preliminary) answers on:

total mass,
local DM density
DM core vs. DM cusp
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Milky Way mass ?

Escape speed : Use 2850 counter-rotating stars at
d<Skpc and ¢,/d<10%

(StarHorse bayesian distance
estimates)
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Fit the tail of the velocity
distribution to ~100 Monte Carlo
realizations at Galactocentric radii

5 kpc< R<10.5 kpc
ripe) J | ) _ (k+ 1)(ve — v)k/(ve —Veut)y V< Ve
Assuming that v, allows toreach "% = {0, V> Ve

3xR;,,, as well as the mass- B ~
concentration relation of ACDM, one = Ve (Re) = 580+63 km/s

gets: M,y = 1.55(-0.51, +0.64) x 102 Mg Monari et al. (2018)
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Local DM density ?

Non-equilibrium => needs development of appropriate framework
including self gravity in 3D

But... first attempts, in 1D and neglecting self-gravity
(Binney & Schonrich 2018; Widmark et al. 2021)

Perturb f(J ) into f(J, 6 ) and let each star oscillate with its
own vertical frequency which depends on the Hamiltonian
=> Shape of phase-spiral depends on the potential and time since pert.

0l e Widmark et al. (2021) fit to quasi-
st \ I[[™* | circular orbits, compare potential to
i .~ | lw |baryonic one and infer
= 15t ‘ »
Il | ppy = 0.0085 + 0.004 M. /pc?

e =0.32 £ 0.15 GeV/em?
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A DM core in the MWN?

m Bulge mass (2.2 kpc, 1.4 kpc, 1.2 kpc): 1.85 x 1019 M,
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What’s next?

- Next data releases will improve even more the observational situation
(e.g., RVS data for 3.5x107 stars down to G~15)

- FROM « US » (DYNAMICISTS): improvements needed: on the
MODELLING side (vertical perturbations with collective effects,
bar and spiral arms formation, chemo-dynamical modelling...)

- Are the LMC and Sgr influences sufficient to explain ‘everything’ in
terms of perturbations of the stellar halo and disk? Is the Sgr stream
fully understood for instance?

- At the horizon 2022: WEAVE as spectroscopic counterpart to Gaia.
High-res survey (R~20000) will allow chemical labelling to G~16 for
~1.2x10° stars

+ Low-res surveys (disk and HighLat) for ~2.75x10° stars
(R~5000) deep in the disk and halo down to G~20



