

Benoit Famaey

CNRS - Observatoire astronomique de Strasbourg

Some Gaia-era questions

- Decipher the structure of the Galaxy, and of each of its components (stellar pops, satellite population), including its dark matter distribution, *e.g.*:
 - 🗆 total mass,
 - \Box core vs. cusp,
 - □ phase-space distribution important for direct searches...
- How many dissolved galaxies formed the stellar halo?
- How many stellar streams (from GCs and dwarfs)? Use these in turn to measure the acceleration field and constrain the DM distribution & clumping (+ effects on secular evolution of the disk?)
- Is it consistent with ΛCDM, with specific DM alternatives (warm DM, self-interacting DM...), with modified gravity?

MW dynamical models

$$\int df/dt = 0 \Leftrightarrow \frac{\partial f}{\partial t} + [f, H] = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial \Phi}{\partial \mathbf{x}} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0,$$
$$\nabla^2 \Phi = 4\pi G \int d^3 \mathbf{v} f$$

Jeans theorem

- If integrable system: $df_0/dt = 0 \Leftrightarrow f_0(I_1,I_2,I_3)$
- Natural phase-space coordinates for regular orbits in (quasi)-integrable systems: actions J and angles θ
 = phase-space canonical coordinates such that H=H(J)
 => f₀ (J) with J adiabatic invariants
- A triplet of actions defines a regular orbit, angles tell us where the star is along that orbit

ACTIONFINDER

- Deep learning algorithm (Ibata et al. 2021) designed to:
- transform a **sample of phase-space measurements along orbits** in an (**unknown**) static potential into action and angle coordinates, using the fact that stars along a same orbit have the same actions
- Find the actual potential !

ACTIONFINDER

ACTIONFINDER

- With 8 points per orbit and 128 orbits (hence 1024 phase-space points), recovers the actions and angles from the Torus machinery of Binney & McMillan with 0.6% precision
- But most importantly: recovers the (unknown) Hamiltonian and therefore Galactic potential !

Stellar streams nearly trace orbits

Streams (Ibata et al., Gaia EDR3):

32 streams in Gaia DR2, 7 new ones without an obvious progenitor in EDR3

Find single stellar pops. and integrate streams orbits in a tube by exploring all distances and radial vel. until stream candidate found (STREAMFINDER)

15 with a globular cluster progenitor (good distance, SSP template, and GC on the actual orbit)

Modelling the MW disc

Adjust comination of parametric DFs:

$$f_{0}(J_{R}, J_{\phi}, J_{z}) = \frac{\Omega(R_{g}(J_{\phi}))}{(2\pi)^{3/2} 2\kappa(R_{g}(J_{\phi}))} \frac{\tilde{\Sigma}(R_{g}(J_{\phi}))}{\tilde{\sigma}_{r}^{2}(R_{g}(J_{\phi}))\tilde{\sigma}_{z}^{2}(R_{g}(J_{\phi}))z_{0}} \times e^{-\frac{J_{R}\kappa}{\tilde{\sigma}_{r}^{2}} - \frac{J_{z}\nu}{\tilde{\sigma}_{z}^{2}}}$$
radial distribution in $R_{g}(J_{\phi})$
velocity ellipsoid together with the velocity disp.dependence in previous factor

Even better: non-parametric DF: adjust with neural nets

But not so « simple »: the disc is perturbed by both internal non-axisymmetries and external perturbations!

Modelling the MW disc: it's a mess

Local velocity space (Monari et al. 2019)

Galactocentric radial velocity map (Katz et al. 2018)

Modelling the MW disc: it's a mess

 \Rightarrow Can traditional Jeans modelling be applied? NO (Haines et al. 2019) \Rightarrow Can we neglect self-gravity of the disc? NO (Khoperskov et al. 2019)

Relevant to testing gravity too!!

Perturbation theory

$$\left| \frac{\mathrm{d}f_1}{\mathrm{d}t} = \frac{\partial f_0}{\partial \mathbf{J}} \cdot \frac{\partial \Phi_1}{\partial \boldsymbol{\theta}} \right| \quad \text{LCBE}$$

$$\Phi_1(R,\varphi,z) = \operatorname{Re}\left\{\sum_{j,l}\phi_{jml}(J_R,J_z,J_\varphi)e^{i(j\theta_R+m\theta_\varphi+l\theta_z)}\right\}$$

Integrate from zero amplitude bar to plateau of constant amplitude:

$$f_{1}(\boldsymbol{J},\boldsymbol{\theta},t) = \operatorname{Re}\left\{\sum_{j,l=-n}^{n} f_{jml} \operatorname{e}^{\operatorname{i}[j\theta_{R}+m(\theta_{\varphi}-\Omega_{p}t)+l\theta_{z}]}\right\}$$
$$f_{jml} = \phi_{jml} \times \frac{j\frac{\partial f_{0}}{\partial J_{R}} + m\frac{\partial f_{0}}{\partial J_{\varphi}} + l\frac{\partial f_{0}}{\partial J_{z}}}{j\omega_{R} + m(\omega_{\varphi}-\Omega_{p}) + l\omega_{z}}$$

Monari et al. (2016); Al Kazwini et al. (2021)

Treating resonances

Monari et al. (2017; 2019) with bar model of Portail et al. (2017)

Vertical perturbations

Taking self-gravity into account needs simultaneously solving **CBE** and **Poisson**

=> Use bi-orthogonal basis functions that solve Poisson (basis functions appropriate for thickened disks)

$$\psi^{\mathbf{s}}(\mathbf{x},t) = \sum_{p} a_{p}(t)\psi^{(p)}(\mathbf{x}); \ \psi^{\mathbf{e}}(\mathbf{x},t) = \sum_{p} b_{p}(t)\psi^{(p)}(\mathbf{x}) \quad \text{The Sgr dwarf potential}$$

$$a_{p}(t) = -\int d\mathbf{x} \int d\mathbf{v} \ f_{\mathbf{l}}(\mathbf{x},\mathbf{v},t) \ \psi^{(p)*}(\mathbf{x}) \quad \text{[equivalent to integrating over J and } \boldsymbol{\theta}]$$

$$\text{Insert solution of linearized CBE and develop}$$

$$\text{the perturbing potential } (\Psi^{\mathbf{s}}+\Psi^{\mathbf{e}}) \text{ on the basis}$$

$$\text{functions (as a sum over q)}$$

$$Work \text{ led by}$$

$$S. \text{ Rozier with A. Siebert}$$

$$\& G. \text{ Monari}$$

Response of the DM halo?

LMC (could have 10%-15% of MW mass!), Sagittarius dwarf and their own DM halo can perturb the DM and stellar halos

 \Rightarrow Analytical perturbation theory relevant too!

⇒ Use the Matrix method to compute the response of the dark and stellar halos to the LMC infall (Rozier et al. in prep.)

 \Rightarrow Allows to isolate the relevant resonances

Response of the DM halo ?

We found that self-gravity is unimportant => the response of the DM halo does not affect the response of the stellar halo (tentatively detected by Petersen & Penarrubia 2020; Erkal et al. 2020; Conroy et al. 2021)

The strength of the response can teach us about the dynamical state of the stellar halo (but not of the DM halo)

The situation regarding self-gravity is probably different regarding the feedback on the halo response on the disk concerning the Sgr dwarf perturbation (Laporte et al. 2018)

Some Gaia-era answers...

■ It's **complicated**... but here are some (preliminary) answers on:

total mass,
local DM density
DM core vs. DM cusp

Milky Way mass ?

Escape speed :

Use 2850 counter-rotating stars at d<5kpc and $\varepsilon_d/d<10\%$ (StarHorse bayesian distance estimates)

Fit the tail of the velocity distribution to ~100 Monte Carlo realizations at Galactocentric radii 5 kpc< R<10.5 kpc

$$f(v|v_{\rm e},k) = \begin{cases} (k+1)(v_{\rm e}-v)^k/(v_{\rm e}-v_{\rm cut}), & v \le v_{\rm e}, \\ 0, & v > v_{\rm e}, \end{cases}$$

 $=> v_e (R_{\odot}) = 580\pm 63 \text{ km/s}$ Monari et al. (2018)

Local DM density ?

Non-equilibrium => needs development of appropriate framework including self gravity in 3D

But... **first attempts**, in 1D and neglecting self-gravity (Binney & Schonrich 2018; Widmark et al. 2021)

Perturb $f(J_z)$ into $f(J_z, \theta_z)$ and let each star oscillate with its **own vertical frequency** which depends on the **Hamiltonian** \Rightarrow Shape of phase-spiral depends on the potential and time since pert.

A DM core in the MW?

Bulge mass (2.2 kpc, 1.4 kpc, 1.2 kpc): $1.85 \times 10^{10} M_{\odot}$

 \blacksquare Dark matter mass: 3.2 \times 10 $^9\,M_{\odot}$

Bar model + keep the RC constant between 6 kpc and 8 kpc => cored DM profile at the center

What's next?

- Next data releases will improve even more the observational situation (e.g., RVS data for 3.5×10^7 stars down to G~15)
- FROM « US » (DYNAMICISTS): improvements needed: on the MODELLING side (vertical perturbations with collective effects, bar and spiral arms formation, chemo-dynamical modelling...)
- Are the LMC and Sgr influences sufficient to explain 'everything' in terms of perturbations of the stellar halo and disk? Is the Sgr stream fully understood for instance?
- At the horizon 2022: **WEAVE** as spectroscopic counterpart to Gaia. High-res survey ($R\sim 20000$) will allow chemical labelling to $G\sim 16$ for $\sim 1.2 \times 10^6$ stars

+ Low-res surveys (disk and HighLat) for $\sim 2.75 \times 10^6$ stars (R~5000) deep in the disk and halo down to G~20