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MW dynamics main questions

m Decipher the structure of the Galaxy, and of each of its
components (stellar pops, gas), including its dark matter
distribution, in configuration space and phase-space (total
mass? core vs. cusp? , ...)

m Understand the various steps in the Galaxy formation process,
understand internal secular processes (e.g., effect of spiral
arms, bar) and external environmental ones (e.g., interactions
with satellites)

m What are the exact roles of spirals (+ today’s number of arms,
pitch angle, pattern speed?) and the bar (length, pattern speed?)

in the secular evolution (radial migration), how did they
evolve? ...



"
MW dynamical models

TOP - DOWN BOTTOM - UP

equation

N-body + hydro I Collisionless Boltzmann

simulations
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Jeans theorem
m [f integrable system: df, /dt=0 < f, (I;,1,.1;)

m Natural phase-space coordinates for regular orbits in
(quasi)-integrable systems: actions J and angles 0
= phase-space canonical coordinates such that H=H(J)

=> f, (J) with J adiabatic invariants

m A triplet of actions defines a regular orbit, angles
tell us where the star is along that orbit

m Phase-space 1s filled by orbital tori
=> use AGAMA (Vasiliev 2019)



" JEE
ACTIONFINDER

m Deep learning algorithm (Ibata et al. 2021) designed to transform a sample
of phase-space measurements along orbits in an (unknown) static
potential into action and angle coordinates, using the fact that stars along a
same orbit have the same actions

m Start from "toy" potential (isochrone) with known
actions and search for canonical transform:

-y
G =G6,J) mmmp g, G
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The neural network then searches for G, minimizing a loss
function (basically the spread in actions along each orbit)



" JEE
ACTIONFINDER

m With 8 points per orbit and 128 orbits (hence 1024
phase-space points), recovers the actions and angles
from the Torus machinery of Binney & McMillan with
0.6% precision

m But most importantly: recovers the (unknown)
Hamiltonian and therefore Galactic potential
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Stellar streams nearly trace orbits

Find single stellar pops. and
Integrate streams orbits 1n a tube

Streams (Ibata et al., Gaia EDR3):

32 streams in Gaia DR2, 7 new ones without

an obvious progenitor in EDR3

Gaia EDR3 detections, [3,12] kpc
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(good distance, SSP template, and GC on the actual orbit)
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Modelling the MW disc

Adjust comination of parametric DFs:

~
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radial distribution in R,(J)  velocity ellipsoid

together with the

velocity

disp.dependence

in previous factor

Even better: non-parametric DF: adjust with neural nets

But not so « simple »: the disc 1s perturbed by both
internal non-axisymmetries and external perturbations!



Modelling the MW disc
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Expressing the bar potential in
actions and angles
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Al Kazwini et al. (2021)
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Linearized CBE

dfi _ 9fo 0%,
dt 0J 00

Integrate from zero amplitude bar to plateau of constant amplitude:

N A
NH(J,0,1) = Re{ Z fimi pilfr+m(6,—C21)+16.] }

Jd=—n
’f ()ﬂ)
f j I]R
jml = /ml X = .
Jwg + m(_w¢ - p,) + Iw:

Monari et al. (2016)
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E.g., imposing f,<f, for resonance (1,2,0) of a fast bar:

fo+fy Staeckel fo+hy Staeckel
BAR 0,=1.89Q, z=0"g BAR 0,=1.890, z=1*X2
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Displacement of the resonance with z (corotation moves faster)
+ depends on the potential => new constraints with Gaia DR3
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Treating resonances

Consider in-plane resonances (I,m): use Arnold averaging principle
=> change to slow angles that almost don’t evolve at
resonance and average over fast angles :

Os = 10p +m (0 — Qpt) , Jp = mds,
O = O, Jr = 1Js + Js.

H = Ho(J;, J) — mQuJ; + Re {cblm(Jf, Js)e“’s}

For each J;, define J ., such that ® =0 and expand around J

Sres Sres

=> Hamiltonian of a pendulum of angle 0,
= New canonical transform to pendulum actions and angles (J,, 0,)
= Phase-mix the original DF over 0



Treating resonances
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V., =0 km/s, declining RC allows to get a more realistic V, = 8 km/s
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Ridges as a function of azimuth

0, = l0r +m (6s— Nt),  Jg
O = OR, Jr

mds,
[Js + Jt.

At the (1,m) = (1,2) OLR, the azimuthal angles of trapped orbits can vary
fast while the angular momentum varies slowly.

But NOT at the (1,m)=(0,2) CR, where any large change in azimuthal
angle 1s accompanied by a large change of angular momentum

=> The J 4 location of the CR varies faster in azimuth than the OLR
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Ridges as a function of azimuth

Jo(km s°1 kpc)

400 pc annulus around the Sun
(StarHorse bayesian distance estimates)

Monari et al. 2019
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=> Can traditional Jeans modelling be applied? NO (Haines et al. 2019)
=> Can we neglect self-gravity of the disc? NO (Khoperskov et al. 2019)

Similar (but less intense) phase spirals survive > 1 Gyr after bar buckling
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The disk is vertically perturbed too

Taking self-gravity into account needs simultaneously solving
CBE and Poisson

=> Use bi-orthogonal basis functions that solve Poisson
(basis functions appropriate for thickened disks)

¢S (Xa t) = Z a'p( )w(p)( Z b (p) The Sgr dwarf potential
p
a, (t) = / dx / dv fl( xX.v.t)t P+ (x) [equivalent to integrating over J and 0]
J ) e —

insert solution of linearized CBE and develop
the perturbing potential (Ws+¥e) on the basis
functions (as a sum over q)

) | )= [drME-n)fa) b)) SRR
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Conclusion and next steps

- Detected dozens of streams => probes of the Galactic potential
making use of ACTIONFINDER (+ self-consistent phase-space
modelling of DM and testing alternatives)

- Disc: 2D analytic formalism for resonances of bar and spirals
= MW bar with CR at 6 kpc qualitatively reproduces a surprisingly
large amount of features in local action-space and velocity-space

- Next step: combine the treatment at resonances with the linear
response to combine the bar an spiral arms (when no resonance
overlap), fit to data on larger scales (velocity field, ridges,...)

- Vertically perturbed disk => Jeans modelling inappropriate

= We need to work on the appropriate analytic formalism (Matrix
method, SEGAL ANR)
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Data: what’s next?

- Next year: Gaia DR3 will improve even more the observational
situation (e.g., RVS data for 3.5x107 stars down to G~15)

- Next year: WEAVE as spectroscopic counterpart to Gaia. High-res
survey (R~20000) will allow chemical labelling to G~16 for

~1.2x10° stars
+ Low-res surveys (disk and HighLat) for ~2.75x10° stars
(R~5000) deep 1n the disk and halo down to G~20



