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Nuclear Star Clusters
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Kinematic diversity
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Scaling relation
Changing scales amounts to changing the clock 
Smaller system ⟶ denser ⟶ faster evolution

tdyn ∝
1
ρ

DM particle - DM halo Star - Galaxy

Star - Globular cluster Star - Black hole (NSC)
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Critical concepts

tdyn ∝
1
ρ

Steady state 
⟶ dynamically locked

Neighbouring scales 
⟶ resonance
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Questions

Orbital reshuffling

Loose free energy

Effect of perturbations

Linear response

Spontaneous evolution
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Mean field dynamics

ρ0 : mass density

ρ0(x) = ∫ dv F(x, v)

ψ0: gravitational potential

Δψ0 = 4πGρ0

Poisson equation

ψ0(x) = − G∫ dx′�
ρ0(x′�)

|x′�− x |

Force

Long-range
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Mean field dynamics

Spherical symmetry ψ0(x) = ψ0(r)Mean-field dynamics

ρ0 : mass density
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Angular momentum          average radius 
Radial action            eccentricity

L ∼
Jr ∼

z component of the angular momentum
Lz ∼ inclination of the orbit

Spherical potential ⟶ 3 conserved quantities 
Actions used to label the orbits

Orbits in a spherical potential

J = (Jr, L, Lz)
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Orbital frequencies

Two frequencies

Ω1 =
2π
Tr

Ω2 =
2π
Tθ
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r θ

Tr Tθ

Ω = Ω(J)

Quasi-periodic orbits
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Corotation

Fixed Rotating

Frequency of the perturbation: 
Resonance ⟶ torque build-up ⟶ perturbation modifies the orbits

ω0 = n ⋅ Ω(J)

ω0 = 2Ω2

Orbital resonances
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Corotation

Fixed Rotating

ω0 = 2Ω2

ω0 = 2Ω2 − Ω1

ω0 = 2Ω2 + Ω1

Lindblad resonances

Inner Lindblad resonance 
(ILR)

Outer Lindblad resonance 
(OLR)

Frequency of the perturbation: 
Resonance ⟶ torque build-up ⟶ perturbation modifies the orbits

ω0 = n ⋅ Ω(J)
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Orbital structure

F(J)
Spherical symmetry Distribution of orbits

Quasi-periodic motion Resonances

θ = θ0 + Ω(J) t ω0 = n ⋅ Ω(J)

ψ0(r)
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How does a stellar system respond to an external perturbation?

Linear Response Theory
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ψ0 → ψ0 + ψ eExternal perturber 

F → F + fPerturbed DF

System's response ψ0 → ψ0 + ψ e + ψs[ f ]

Linearised collisionless Boltzmann equation

∂f
∂t

+ Ω(J) ⋅
∂f
∂θ

−
∂F
∂J

⋅
∂(ψe + ψs)

∂θ
= 0
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How does a stellar system respond to an external perturbation?
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How does a stellar system respond to an external perturbation?

ψs

Linear Response Theory

∂f
∂t

+ Ω(J) ⋅
∂f
∂θ

−
∂F
∂J

⋅
∂(ψ e + ψ s)

∂θ
= 0

Linearised CBE

Δψs = 4πGρs

Poisson

Easier in (θ, J)

Easier in (x, v)

Problem: 
choice of variablesAmplifier
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Projection on a basis Kalnajs 1976

ψ e(x, ω)

The basis solves the Poisson equation

b(ω)

Response matrixM(ω)
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Time Laplace transform 
Complex frequency ω = ω0 + i η

ω0
η

ψe(x, ω)
ψs(x, ω) a(ω)

Basis elements

Pattern speed 
Growth rate

a(ω) = M(ω) ⋅ [I − M(ω)]−1 ⋅ b(ω) Linear Response

a(ω) = M(ω) ⋅ [I − M(ω)]−1 ⋅ 0+ Linear Instabilities
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Unstable equilibrium

Rozier et al. 2019
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Unstable equilibrium
bar amplitude

Exponential growth
∝ eηt

Rozier et al. 2019

Slopeη
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Unstable equilibrium
bar amplitude

bar angle

Exponential growth
∝ eηt

∝ eiω0t

Rozier et al. 2019

Slopeη

Slope ω0

Steady rotation
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Modes

Condition for a mode: det[I − M(ω)] = 0

η < 0

The mode is damped

η = 0 η > 0

The mode is neutral The mode is growing

ω = ω0 + i η

INSTABILITY

Eigenvector ⟶ mode shape

Mode = Self-sustained response via spontaneous orbital distortions

ψs ∝ eηt eiω0t
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Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)



!37

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Sum over resonance vectors (3D)



!38

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Integral over action space (3D)

Sum over resonance vectors (3D)



!39

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Resonant denominator  
at the intrinsic frequencies

Integral over action space (3D)

Sum over resonance vectors (3D)



!40

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Resonant denominator  
at the intrinsic frequencies

Potential basis functions

Integral over action space (3D)

Sum over resonance vectors (3D)



!41

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Resonant denominator  
at the intrinsic frequencies

Gradient of the distribution function

Potential basis functions

Integral over action space (3D)

Sum over resonance vectors (3D)



!42

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Resonant denominator  
at the intrinsic frequencies

Truncation of the sum 
Low-order resonances matter the most

Gradient of the distribution function

Potential basis functions

Integral over action space (3D)

Sum over resonance vectors (3D)



!43

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Resonant denominator  
at the intrinsic frequencies

Truncation of the sum 
Low-order resonances matter the most

Gradient of the distribution function

Potential basis functions

Integral over action space (3D)

Sum over resonance vectors (3D)

Computing the integral 
Tailor made approximations to account for the  
resonant denominator



!44

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
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Computation of M(ω)
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Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Computation of M(ω)

Gradient of the distribution function

Resonant denominator  
at the intrinsic frequencies

Truncation of the sum 
Low-order resonances matter the most

Rotating cluster 
No rotation: 
With rotation:

F(Jr, L)
F(Jr, L, Lz)

Potential basis functions

Computing the harmonic transform of the basis 

Runge-Kutta scheme to compute the nested integrals 
Gain in performance: about 100

ψ (p)(x) → ψ (p)(J, θ) → ψ (p)
n (J)

Integral over action space (3D)

Sum over resonance vectors (3D)

Computing the integral 
Tailor made approximations to account for the  
resonant denominator
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Nyquist diagrams

Nyquist contours

ω0 ↦ det[I − M(ω0 + i η)]
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Nyquist contours
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Influence of rotation
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Outline of the method
System Response matrix

MeasurementsNyquist contours

F(J)

M(ω)

●● ●●

0.040
0.045
0.049
0.054

0.542
0.544

0.547
0.550
0.553
0.555

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0



!50

Stellar Clusters 
Orbital structure of stellar clusters 

Linear Response Theory 
Identifying unstable modes 

Anisotropic, rotating stellar clusters 

Destabilisation processes 

Conclusions and prospects



!51

Plummer potential
Plummer 1911
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q: anisotropy         𝛼: rotation

Linear Response Theory

η(𝛼,q) = growth rate

Mapping the stability landscape

q
α

1200 equilibria
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q: anisotropy         𝛼: rotation

Linear Response Theory N-body simulations

η(𝛼,q) = growth rate

q
α

Mapping the stability landscape

1200 equilibria
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Tangentially anisotropic 
Fast rotation

Radially anisotropic 
⟶ Radial Orbit Instability (ROI)

Results: Stability mapping
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Tangential regime
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Radial regime
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3 resonant processes

Radial orbit 
instability

Circular orbit 
instability

Tumbling 
instability
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3 resonant processes

Radial orbit 
instability
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Radial orbit instability
Quasi-resonant orbit at the inner Lindblad resonance

Torque bar ⟶ orbit Oscillation Trapped orbits ⟶ bar enhanced

gravitational torque VS azimuthal pressure

Antonov 1973, Hénon 1973

Drift

Torque

Oscillations
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Restricted matrix method
ROI

(n1, n2, n3) = (−1,2,2)

Relies on the ILR 

Occurs in radial systems

COI

(n1, n2, n3) = (−1,2,2)

Relies on the ILR 

Occurs in tangential systems

TI

(n1, n2, n3) = (0,0,2)

Relies on the TR 

Occurs in rotating systems

Mpq(ω) = (2π)3 ∑
(n1,n2,n3)

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

Method to identify the resonant processes sourcing instabilities

Isolate the contribution  
from each resonance 

ILR TR Other resonances

⟶ Perform the full mode search, but selecting only a fraction of the resonant terms

(n1, n2, n3) = (−1,2,2) (n1, n2, n3) = (0,0,2) (n1, n2, n3)
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Application to the rotating ROI

η Slow ROI

Breen, Rozier et al. 2020, 
submitted to MNRAS
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Application to the rotating ROI

ℓp
=2

ℓp
=3

ℓp
=4

ℓq=2 ℓq=3 ℓq=4

Mpq1
Reference = Full matrix M(ω)
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Remove the ILR ⟶ no more unstable 
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Application to the rotating ROI
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Application to the rotating ROI

ILR + TR ⟶ instability barely changes

⟶ The ROI and the TI cooperate for the instability

ILR or TR only ⟶ instability strongly affected

Reference = Full matrix

Remove the ILR ⟶ no more unstable 

Remove the TR ⟶ growth rate strongly affected
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Conclusions
• Algorithmic improvements ⟶ parameter space explorations

Mpq(ω) = (2π)3 ∑
n

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ(p)*
n (J) ψ(q)

n (J)

• Computation of the matrix for rotating spheres

ℓp
=2

ℓp
=3

ℓp
=4

ℓq=2 ℓq=3 ℓq=4

Mpq1

ℓp
=2

ℓp
=3

ℓp
=4

ℓq=2 ℓq=3 ℓq=4

Mpq0M(ω), α = 0 M(ω), α ≠ 0
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Conclusions

• The stability region around isotropic clusters is narrow 

⟶ Dynamically cold clusters tend to be linearly unstable

Isotropic 
valley
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Conclusions

ROI COI TI

Restricted matrix method  
⟶ destabilisation processes

TI enhances  
pre-existing instabilities

Resonant processes  
⟶ important drivers of  

the linear response  
(ILR)



!72

Questions

Orbital reshuffling

Effect of perturbations

Spontaneous evolution

Processes

Yes, in highly ordered systems

Yes, many linear instabilities

New analytical tools 
+ relevant processes

Resonances
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Prospects
• Use the same numerical methods in other contexts: 

NGC4365NGC448

Thursday, 30July, 20

N
ed

el
ch

ev
 e

t a
l. 

20
19

Cuspy systems Multi-component systems

Axisymmetric systems Less regular DF

DM halo

Galaxy
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• Study linear evolution

Prospects

a(t) = ∫
t

−∞
dt′�M(t′�− t) ⋅ (a(t′�) + b(t′�))

S.
 C

ol
om

bi
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Prospects

Balescu-Lenard

• Study secular evolution

∂F(J, t)
∂t

= π(2π)3 Mtot

N
∂
∂J

⋅ [∑
n,n′ �

n∫ dJ′�
δ(n ⋅ Ω − n′� ⋅ Ω′�)

𝒟nn′ �(J, J′�, n ⋅ Ω)
2 (n ⋅

∂
∂J

− n′� ⋅
∂
∂J )F(J, t)F(J′ �, t)]

1
𝒟nn′�(J, J′�, ω)

= ∑
p,q

ψ (p)
n (J) [I − M(ω)]−1

pq
ψ (q)*

n′� (J′�)
N

ew
 H

or
iz

on
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Thank you for your attention
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5598 S. Kamann et al.

Figure 5. Results of the kinematic analysis for three clusters from our sample, NGC 104 (top), NGC 6441 (middle) and NGC 7089 (bottom). The left-hand
panels show the radial rotation and dispersion profiles, respectively. The dashed and dotted vertical lines indicate the core and half-light radii of each cluster;
all values were taken from Harris (1996). The central panel shows the position angle of the rotation curve and its uncertainty for each radial bin. A blue dashed
line is used to indicate the cluster’s photometric semi-major axis angle as determined in Section 6.1, with the blue shaded area indicating the uncertainty and
the length of the line scaling with cluster ellipticity. The right-hand panels show Voronoi-binned maps of the mean velocity and the velocity dispersion across
the footprint covered by the MUSE data. The dashed circles indicate again the core radii of the clusters. Similar plots for the remaining clusters of our sample
are presented in Appendix A.

in our sample rotate. If we perform a visual classification of our
sample into non-rotating or rotating clusters, we find that about
60 per cent (13/22) of the clusters show obvious rotation, while
the remaining ones appear consistent with no rotation. Further in-
spection of the radial profiles of the rotating clusters reveals a pro-
nounced similarity in that the rotation signal increases with distance
to the cluster centre. It tends to disappear inside the core radius and
steadily increases between the core and the half-light radius. This
behaviour is in general agreement with the evolutionary globular
cluster models of Fiestas et al. (2006) or the equilibrium models of
Lagoute & Longaretti (1996) or Varri & Bertin (2012). It was
also found in detailed studies of individual clusters like NGC 104
or NGC 5139 (e.g. Meylan & Mayor 1986; Merritt, Meylan &

Mayor 1997; van de Ven et al. 2006; Sollima et al. 2009, see dis-
cussion below). Beyond the half-light radii, our data lack the radial
coverage to investigate any further trends. In this respect, it is inter-
esting to note that some of the clusters that we visually classified
as non-rotating (NGC 3201, NGC 6121 and NGC 6254) have large
core radii so that our data coverage is basically restricted to the
areas inside the core radii. Hence, we cannot exclude the possibility
that the clusters rotate at larger radii. This, and the fact that projec-
tion effects may also limit the amount of visible rotation in some
clusters [the inclination of most clusters is not known, but see van
de Ven et al. (2006) for NGC 5139 or Bellini et al. (2017) for NGC
104], leads us to conclude that the fraction of rotating clusters in
our sample is probably significantly higher than 60 per cent.

MNRAS 473, 5591–5616 (2018)
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Integral field spectroscopy

Each optic fibre ⟶ mean velocity + velocity dispersion of a region of the galaxy

CALIFA (Husemann et al. 2013) NGC 4621 (Emsellem et al. 2011)
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Dynamical description of a stellar cluster

Many orbits ⟶ distribution function F(J, θ, t)

∂F
∂t

+ ·w ⋅
∂F
∂w

= 0

Collisionless Boltzmann equation

 = dynamics of a particle

w = (x, v) or (J, θ)

·w

Hamiltonian 

H(x, v) =
v2

2
+ ψ0(x)

Hamilton's equations

·v = −
∂H
∂x

;

·θ =
∂H
∂J

= Ω(J)·J = −
∂H
∂θ

= 0 ;

·x =
∂H
∂v

Actions are constants ⟶ angles evolve linearly in time, at rate Ω
CBE in angle-action variables

∂F
∂t

+ Ω(J) ⋅
∂F
∂θ

= 0

In angle-action variables

Equilibrium: ∂F
∂t

= 0

→ F = F(J)
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Perturbed dynamics
Change in the potential ⟶ change in the orbits ⟶ change in the DF.

Perturbation described by its time frequencies (Fourier components) 
-> possible resonances: the torque builds up -> changes on the orbits are larger at resonances

2 kinds of behaviours: transient waves (winding - phase mixing); self-sustained modes

ψ0 + ψ J + δJ F + fθ + δθ

ψ = ψ e + ψ s
External perturbationψ e

ψ s Wake induced in the system ψ s = ∫ dv dx′�
f(x′�, v)

|x′�− x |

Linearised CBE

∂f
∂t

+ Ω(J) ⋅
∂f
∂θ

−
∂F
∂J

⋅
∂(ψe + ψs)

∂θ
= 0



!81

Projection on a bi-orthogonal basis Kalnajs 1976

Bi-orthogonal potential-density basis solving the Poisson equation
Δψ (p) = 4πGρ(p)

∫ dx ψ (p)*(x)ρ(q)(x) = − δq
p

Same projection of          and  ψ ρ ψ(x) = ∑ cpψ (p)(x)

ρ(x) = ∑ cpρ(p)(x)

Compute once and for all the expression of ψ (p)(J, θ)

The perturbation is fully represented by the vector        ⟶ transposed into linear algebracp

⟶ Response matrix ap = M cp = M (ap + bp)
ψ s ψ ψ e
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Scaling relation

Gravitational field from a cluster: g =
GM
r2

Acceleration of a circular orbit: a =
v2

r

Newton's second law: g = a

ρ ∝
M
r3

v ∝
r

tdyn

tdyn ∝
1
ρ

Changing scales amounts to changing the clock

Smaller system ⟶ denser ⟶ faster evolution
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Stable VS unstable equilibria

Stable equilibrium Unstable equilibrium

Dynamics opposes a perturbation Dynamics amplifies a perturbation
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Rotating spheres

This study (q=2) Jindal et al. 2019 (GAIA DR2)
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Prospects

• Build an intuitive explanation for the COI 

• Process setting the pattern speed?
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The Milky Way's Nuclear Star Cluster
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Nuclear Star Clusters
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ρs(x, ω) = ∫ dx′�𝒪(x, x′�, ω)[ψ s(x′�, ω) + ψ e(x′�, ω)]

Projection on a basis Kalnajs 1976

ψ e(x, ω)

The basis solves the Poisson equation

Projected

b(ω)

CBE 
+ 

Poisson

CBE a(ω) = M(ω) ⋅ (a(ω) + b(ω))

Integro-differential  
operator

Response matrix

Long-range force ⟶ Non-local basis

Uses of the response matrix: 
Linear Response 
Linear Instabilities
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Restricted matrix method

ROI

(n1, n2, n3) = (−1,2,2)

Relies on the ILR 

Occurs in radial systems

COI

(n1, n2, n3) = (−1,2,2)

Relies on the ILR 

Occurs in tangential systems

TI

(n1, n2, n3) = (0,0,2)

Relies on the TR 

Occurs in rotating systems

Mpq(ω) = (2π)3 ∑
(n1,n2,n3)

∫ dJ
n ⋅ ∂F/∂J
ω − n ⋅ Ω

ψ (p)*
n (J) ψ (q)

n (J)

Method to identify the resonant processes sourcing instabilities

Isolate the contribution  
from each resonance 

∫ dJ
−∂F/∂Jr + 2∂F/∂L

ω + Ω1 − 2Ω2
ψ (p)*

(−1,2)(J) ψ (q)
(−1,2)(J)

ILR TR

∫ dJ
F
ω

ψ (p)*
(0,0)(J) ψ (q)

(0,0)(J)

Other resonances

⟶ Perform the full mode search, but selecting only a fraction of the resonant terms

(n1, n2, n3) = (−1,2,2) (n1, n2, n3) = (0,0,2)
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Circular orbit instability

2Ω-κ

κ
2Ω

2Ω+κ

1 2 3
Rg

1

2

3

4
n1κ + n2Ω

Merging of 2 resonances at the maximum of 
Formation of a neutral mode with negative energy 
Energy dissipation by coupling with the underlying stars ⟶ instability

ωILR = 2Ω − κ

Ω : angular frequency
κ : radial frequency

Palmer et al. 1989
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Tumbling instability

Torque between a bar and an inclined orbit

⟶ Tends to lower the orbits' inclinations 

⟶ Traps the orbital plane into libration

Allen et al. 1992



!92

Nyquist diagrams: Influence of rotation

Nyquist contours
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Questions

• How do stellar clusters respond to 

perturbations?  

Linear response 

• What is the influence of diverse 

kinematics? 

Rotation - anisotropy 

• What are the important processes at play? 

Long range force - resonances 

• Why do we care? 

Nature VS nurture
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Linear stability analysis

• What are the allowed states? 

Stable states 

• What are the favoured states? 

Stability boundaries 

• Which processes matter? 

Resonances 

• How do systems amplify perturbations? 

Linear response
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Nyquist contours
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Mpq(ω) = (2π)3 ∑
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∫ dJ
n ⋅ ∂F/∂J
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Nyquist contours
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