

Linear Stability of Rotating Stellar Clusters

Simon Rozier

PhD defense - Institut d'astrophysique de Paris - 17/09/2020

Supervisors

President of the jury

Referees

Examinators

Christophe Pichon Jean-Baptiste Fouvry

Benoit Semelin

Eugene Vasiliev Dominique Aubert

Anna Lisa Varri Sven De Rijcke Benoit Famaey

Stellar Clusters

Orbital structure of stellar clusters Linear Response Theory Identifying unstable modes Anisotropic, rotating stellar clusters **Destabilisation processes Conclusions and prospects**

Stellar Clusters

Dark matter halos

4

Galaxies

Galaxies

Abell S1063 (HST)

Galaxies

1 Mpc

The Milky Way

Milky Way (Gaia)

 M10
 GC
 I0¹²

 0
 GC
 I0¹⁰

 10¹⁰
 I0¹⁰
 I0¹⁰

GC

Globular Clusters

M 10 (HST)

Nuclear Star Clusters

Scaling relation

Changing scales amounts to **changing the clock** Smaller system \rightarrow denser \rightarrow faster evolution

DM particle - DM halo

Star - Globular cluster

Star - Black hole (NSC)

Star - Galaxy

Critical concepts

Gas brings order → kinematic diversity

Interactions \rightarrow perturbations

Questions

Orbital reshuffling

Loose free energy

Spontaneous evolution

Instabilities

Effect of perturbations

Linear response

Processes

Long-range couplings Resonances

10 kpc

Stellar Clusters

Orbital structure of stellar clusters

Linear Response Theory Identifying unstable modes Anisotropic, rotating stellar clusters **Destabilisation processes Conclusions and prospects**

Mean field dynamics

Mean field dynamics

Mean field dynamics

Spherical potential \rightarrow 3 conserved quantities $\mathbf{J} = (J_r, L, L_z)$ Actions used to label the orbits

Angular momentum $L \sim$ average radius Radial action $J_r \sim$ eccentricity

z component of the angular momentum $L_z \sim$ inclination of the orbit

Orbital frequencies

Orbital resonances

Resonance \rightarrow **torque build-up** \rightarrow perturbation **modifies** the orbits

Fixed

Corotation

Lindblad resonances

Orbital structure

Stellar Clusters

Orbital structure of stellar clusters

Linear Response Theory

Identifying unstable modes

Anisotropic, rotating stellar clusters

Destabilisation processes

Conclusions and prospects

Linear Response Theory

How does a stellar system **respond** to an **external perturbation**?

Linearised collisionless Boltzmann equation

$$\frac{\partial f}{\partial t} + \mathbf{\Omega}(\mathbf{J}) \cdot \frac{\partial f}{\partial \theta} - \frac{\partial F}{\partial \mathbf{J}} \cdot \frac{\partial (\psi^{e} + \psi^{s})}{\partial \theta} = 0$$

Linear Response Theory

How does a stellar system **respond** to an **external perturbation**?

Linear Response Theory

How does a stellar system **respond** to an **external perturbation**?

Projection on a basis Kalnajs 1976

$$\mathbf{M}(\omega) \text{ Response matrix}$$
$$\mathbf{a}(\omega) = \mathbf{M}(\omega) \cdot [\mathbf{I} - \mathbf{M}(\omega)]^{-1} \cdot \mathbf{b}(\omega) \longrightarrow \text{Linear Response}$$
$$\mathbf{a}(\omega) = \mathbf{M}(\omega) \cdot [\mathbf{I} - \mathbf{M}(\omega)]^{-1} \cdot 0^{+} \longrightarrow \text{Linear Instabilities}$$

Unstable equilibrium

Rozier et al. 2019

Unstable equilibrium

Rozier et al. 2019

Unstable equilibrium

Modes

Stellar Clusters

Orbital structure of stellar clusters

Linear Response Theory

Identifying unstable modes

Anisotropic, rotating stellar clusters

Destabilisation processes

Conclusions and prospects

Computation of $M(\omega)$

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$
$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Sum over **resonance vectors** (3D)

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F}{\partial \mathbf{J}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Sum over **resonance vectors** (3**D**)

Integral over action space (3D)

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Sum over resonance vectors (3D)

Integral over action space (3D)

Resonant denominator at the intrinsic frequencies

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int \mathbf{dJ} \frac{\mathbf{n} \cdot \partial F}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Sum over resonance vectors (3D)

Integral over action space (3D)

Resonant denominator at the intrinsic frequencies

Potential basis functions

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Sum over resonance vectors (3D)

Integral over action space (3D)

Resonant denominator at the intrinsic frequencies

Potential basis functions

Gradient of the distribution function

Computation of $M(\omega)$ $d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\boldsymbol{\omega} - \mathbf{n} \cdot \mathbf{\Omega}}$ $\mathbf{M}_{pq}(\omega) = (2\pi)^3$ n **Truncation** of the sum Sum over resonance vectors (3D) Low-order resonances matter the most Integral over action space (3D) **Resonant denominator** at the intrinsic frequencies Potential basis functions Gradient of the distribution function

$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int_{\mathbf{n}} \mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int_{\mathbf{n}} \mathbf{M}$	$\frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$	
Sum over resonance vectors (3D)	Truncation of the sum Low-order resonances matter the most	
Integral over action space (3D)	Computing the integral Tailor made approximations to account for the	
Resonant denominator at the intrinsic frequencies	resonant denominator	
Potential basis functions		
Gradient of the distribution function		

$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int_{\mathbf{n}} \mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \mathbf{M}_{pq}(\omega) = (2\pi)^$	$\frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$	
Sum over resonance vectors (3D)	Truncation of the sum Low-order resonances matter the most	
Integral over action space (3D)	Computing the integral Tailor made approximations to account for the	
Resonant denominator at the intrinsic frequencies	resonant denominator	
Potential basis functions	Computing the harmonic transform of the basis $\psi^{(p)}(\mathbf{X}) \rightarrow \psi^{(p)}(\mathbf{J}, \boldsymbol{\theta}) \rightarrow \psi^{(p)}_{\mathbf{n}}(\mathbf{J})$	
	Runge-Kutta scheme to compute the nested integrals Gain in performance: about 100	
Gradient of the distribution function		

$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int_{\mathbf{n}} \mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \mathbf{M}_{pq}(\omega) = (2\pi)^$	$\frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$	
Sum over resonance vectors (3D)	Truncation of the sum Low-order resonances matter the most	
Integral over action space (3D)	Computing the integral	
Resonant denominator at the intrinsic frequencies	Tailor made approximations to account for the resonant denominator	
Potential basis functions	Computing the harmonic transform of the basis $\psi^{(p)}(\mathbf{x}) \rightarrow \psi^{(p)}(\mathbf{J}, \boldsymbol{\theta}) \rightarrow \psi^{(p)}_{\mathbf{n}}(\mathbf{J})$ Runge-Kutta scheme to compute the nested integrals Gain in performance: about 100	
Gradient of the distribution function	Rotating clusterNo rotation: $F(J_r, L)$ With rotation: $F(J_r, L, \mathbf{L_z})$	

Nyquist contours

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Nyquist diagrams $\omega_0 \mapsto \det[\mathbf{I} - \mathbf{M}(\omega_0 + i\eta)]$

Nyquist contours

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Nyquist diagrams $\omega_0 \mapsto \det[\mathbf{I} - \mathbf{M}(\omega_0 + i\eta)]$

Influence of rotation

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Nyquist diagrams

 $\omega_0 \mapsto \det[\mathbf{I} - \mathbf{M}(\omega_0 + i\eta)]$

Outline of the method

Stellar Clusters

Orbital structure of stellar clusters

Linear Response Theory

Identifying unstable modes

Anisotropic, rotating stellar clusters

Destabilisation processes Conclusions and prospects

A series of equilibria

q: anisotropy α : rotation

Linear Response Theory

N-body simulations

q: anisotropy

 α : rotation

Results: Stability mapping

Tangential regime

Stellar Clusters

Orbital structure of stellar clusters

Linear Response Theory

Identifying unstable modes

Anisotropic, rotating stellar clusters

Destabilisation processes

Conclusions and prospects

3 resonant processes

3 resonant processes

Radial orbit instability

Antonov 1973, Hénon 1973

gravitational torque VS azimuthal pressure

Restricted matrix method

Method to identify the resonant processes sourcing instabilities

→ Perform the **full mode search**, but selecting only a **fraction of the resonant terms**

\mathcal{I}	$\eta(\alpha = 1)$
Reference	0.040
(-1, 2), (0, 0)	0.040
$\mathcal{I}_0 \setminus (-1,2)$	$< 10^{-4}$
$\mathcal{I}_0 \setminus (0,0)$	0.015
(-1, 2)	0.008
(0,0)	$< 10^{-4}$
0.12 0.09 0.06 0.03 -16 -12 -8 q -4	Slow ROI 0 = 0

Breen, **Rozier** et al. 2020, submitted to MNRAS

\mathcal{I}	$\eta(\alpha = 1)$
Reference	0.040
(-1, 2), (0, 0)	0.040
$\mathcal{I}_0 \setminus (-1,2)$	$< 10^{-4}$
$\mathcal{I}_0 \setminus (0,0)$	0.015
(-1, 2)	0.008
(0, 0)	$< 10^{-4}$
Reference = Full matrix	$\mathbf{M}(\cdot)$

\mathcal{I}	$\eta(\alpha=1)$
Reference	0.040
(-1, 2), (0, 0)	0.040
$\mathcal{I}_0 \setminus (-1,2)$	$< 10^{-4}$
$\mathcal{I}_0 \setminus (0,0)$	0.015
(-1, 2)	0.008
(0, 0)	$< 10^{-4}$

Reference = Full matrix

Remove the ILR \rightarrow no more unstable

	\mathcal{I}	$\eta(\alpha=1)$
	Reference	0.040
	(-1, 2), (0, 0)	0.040
	$\mathcal{I}_0 \setminus (-1,2)$	$< 10^{-4}$
	$\mathcal{I}_0 \setminus (0,0)$	0.015
	(-1, 2)	0.008
	(0,0)	$< 10^{-4}$
Reference = Full matrix		
Remove the ILR \rightarrow no more unstable		

Remove the TR \rightarrow growth rate **strongly affected**

\mathcal{I}	$\eta(\alpha=1)$
Reference	0.040
(-1, 2), (0, 0)	0.040
$\mathcal{I}_0 \setminus (-1,2)$	$< 10^{-4}$
$\mathcal{I}_0 \setminus (0,0)$	0.015
(-1,2)	0.008
(0, 0)	$< 10^{-4}$

 Reference = Full matrix

 Remove the ILR → no more unstable

 Remove the TR → growth rate strongly affected

 ILR or TR only → instability strongly affected

Reference = Full matrixRemove the ILR \rightarrow no more unstableRemove the TR \rightarrow growth rate strongly affectedILR or TR only \rightarrow instability strongly affectedILR + TR \rightarrow instability barely changes

→ **The ROI and the TI cooperate** for the instability

Stellar Clusters

Orbital structure of stellar clusters Linear Response Theory Identifying unstable modes Anisotropic, rotating stellar clusters **Destabilisation processes**

Conclusions and prospects

Conclusions

● **Algorithmic improvements** → parameter space explorations

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

• Computation of the matrix for **rotating spheres**

Conclusions

- The stability region around isotropic clusters is narrow
- → Dynamically cold clusters tend to be linearly unstable

Conclusions

• Use the same numerical methods in other contexts:

• Study linear evolution

$$\mathbf{a}(t) = \int_{-\infty}^{t} \mathrm{d}t' \, \mathbf{M}(t'-t) \cdot (\mathbf{a}(t') + \mathbf{b}(t'))$$

S. Colombi

• Study secular evolution

Balescu-Lenard

$$\frac{\partial F(\mathbf{J},t)}{\partial t} = \pi (2\pi)^3 \frac{M_{\text{tot}}}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{n},\mathbf{n}'} \mathbf{n} \left[\mathbf{d} \mathbf{J}' \frac{\delta(\mathbf{n} \cdot \Omega - \mathbf{n}' \cdot \Omega')}{\left| \boldsymbol{\oslash}_{\mathbf{n}\mathbf{n}'}(\mathbf{J}, \mathbf{J}', \mathbf{n} \cdot \Omega) \right|^2} \left(\mathbf{n} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{n}' \cdot \frac{\partial}{\partial \mathbf{J}} \right) F(\mathbf{J},t)F(\mathbf{J}',t) \right]$$

$$= \frac{1}{\boldsymbol{\oslash}_{nn'}(\mathbf{J}, \mathbf{J}', \boldsymbol{\omega})} = \sum_{p,q} \frac{\psi_{\mathbf{n}'}^{(p)}(\mathbf{J})}{\left| \mathbf{I} - \mathbf{M}(\boldsymbol{\omega}) \right|_{pq}} \psi_{\mathbf{n}'}^{(q)*}(\mathbf{J}')$$
Here we have:

Thank you for your attention

Astrometry

Light spectrum of each star \rightarrow velocity of each star along the line-of-sight

Integral field spectroscopy

Each optic fibre \rightarrow mean velocity + velocity dispersion of a region of the galaxy

CALIFA (Husemann et al. 2013)

NGC 4621 (Emsellem et al. 2011)

Dynamical description of a stellar cluster

Hamiltonian

$H(\mathbf{x}, \mathbf{v}) = \frac{v^2}{2} + \psi_0(\mathbf{x})$
--

Hamilton's equations

$\dot{\mathbf{v}} = -\frac{\partial H}{\partial \mathbf{x}}$	H	$\dot{\mathbf{x}} = \partial H$
	— , Х	$\mathbf{x} = \frac{\partial \mathbf{v}}{\partial \mathbf{v}}$

In angle-action variables

$$\dot{\mathbf{J}} = -\frac{\partial H}{\partial \boldsymbol{\theta}} = 0$$
 ; $\dot{\boldsymbol{\theta}} = \frac{\partial H}{\partial \mathbf{J}} = \boldsymbol{\Omega}(\mathbf{J})$

Many orbits \rightarrow distribution function $F(\mathbf{J}, \boldsymbol{\theta}, t)$

Collisionless Boltzmann equation

$$\frac{\partial F}{\partial t} + \dot{\mathbf{w}} \cdot \frac{\partial F}{\partial \mathbf{w}} = 0$$

$$\mathbf{w} = (\mathbf{x}, \mathbf{v}) \text{ or } (\mathbf{J}, \boldsymbol{\theta})$$

 $\dot{\mathbf{w}} = dynamics of a particle$

Actions are constants ightarrow angles evolve linearly in time, at rate $\,\Omega\,$

$$\frac{\partial F}{\partial t} + \mathbf{\Omega}(\mathbf{J}) \cdot \frac{\partial F}{\partial \boldsymbol{\theta}} = 0$$

Equilibrium:
$$\frac{\partial F}{\partial t} = 0$$

 $\rightarrow F = F(\mathbf{J})$

Perturbed dynamics

Change in the potential \rightarrow change in the orbits \rightarrow change in the DF. $\psi_0 + \psi$ $\mathbf{J} + \delta \mathbf{J}$ $\boldsymbol{\theta} + \delta \boldsymbol{\theta}$ F + f

$$\psi = \psi^{e} + \psi^{s} \qquad \qquad \psi^{e} \quad \text{External perturbation} \\ \psi^{s} \quad \text{Wake induced in the system} \qquad \psi^{s} = \int d\mathbf{v} \, d\mathbf{x}' \frac{f(\mathbf{x}', \mathbf{v})}{|\mathbf{x}' - \mathbf{x}|}$$

Linearised CBE
$$\frac{\partial f}{\partial t} + \mathbf{\Omega}(\mathbf{J}) \cdot \frac{\partial f}{\partial \theta} - \frac{\partial F}{\partial \mathbf{J}} \cdot \frac{\partial(\psi^{e} + \psi^{s})}{\partial \theta} = 0$$

Perturbation described by its time frequencies (Fourier components) -> possible resonances: the torque builds up -> changes on the orbits are larger at resonances

2 kinds of behaviours: transient waves (winding - phase mixing); self-sustained modes

Projection on a bi-orthogonal basis

Kalnajs 1976

 $\Delta \psi^{(p)} = 4\pi G \rho^{(p)}$ $\int d\mathbf{x} \, \psi^{(p)*}(\mathbf{x}) \rho^{(q)}(\mathbf{x}) = -\delta_p^q$

Bi-orthogonal potential-density basis solving the Poisson equation

Compute once and for all the expression of $\psi^{(p)}(\mathbf{J}, \boldsymbol{\theta})$

Same projection of $\ \psi$ and $\ \rho$

$$\psi(\mathbf{x}) = \sum c_p \psi^{(p)}(\mathbf{x})$$
$$\rho(\mathbf{x}) = \sum c_p \rho^{(p)}(\mathbf{x})$$

The perturbation is fully represented by the vector $c_p \rightarrow$ transposed into linear algebra

 \rightarrow Response matrix

$$\mathbf{a}_{p} = \mathbf{M} \mathbf{c}_{p} = \mathbf{M} (\mathbf{a}_{p} + \mathbf{b}_{p})$$
$$\boldsymbol{\psi}^{s} \qquad \boldsymbol{\psi}^{e}$$

Scaling relation

Changing scales amounts to changing the clock Smaller system \rightarrow denser \rightarrow faster evolution

Stable VS unstable equilibria

Stable equilibrium

Unstable equilibrium

Dynamics **opposes** a perturbation

Dynamics amplifies a perturbation

Rotating spheres

• Build an intuitive explanation for the COI

• Process setting the pattern speed?

Nuclear Star Clusters

Projection on a basis Kalnajs 1976

The basis solves the Poisson equation

Restricted matrix method

Method to identify the resonant processes sourcing instabilities

→ Perform the **full mode search**, but selecting only a **fraction of the resonant terms**

Circular orbit instability

Palmer et al. 1989

Merging of 2 resonances at the maximum of $\omega_{\text{ILR}} = 2\Omega - \kappa$ Formation of a neutral mode with negative energy Energy dissipation by coupling with the underlying stars \rightarrow instability

Tumbling instability

Allen et al. 1992

Torque between a bar and an **inclined orbit**

- \rightarrow Tends to lower the orbits' inclinations
- → Traps the **orbital plane** into libration

Nyquist contours

Questions

 How do stellar clusters respond to perturbations?

Linear response

What is the influence of diverse kinematics?

Rotation - anisotropy

- What are the **important processes** at play? Long range force - resonances
- Why do we care?

Nature VS nurture

Linear stability analysis

- What are the allowed states?
 Stable states
- What are the favoured states?
 Stability boundaries
- Which **processes** matter?

Resonances

• How do systems **amplify perturbations**?

Linear response

Nyquist contours

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Nyquist diagrams $\omega_0 \mapsto \det[\mathbf{I} - \mathbf{M}(\omega_0 + i\eta)]$

Nyquist contours

$$\mathbf{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial F/\partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} \psi_{\mathbf{n}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Nyquist diagrams $\omega_0 \mapsto \det[\mathbf{I} - \mathbf{M}(\omega_0 + i\eta)]$

